Rescue of nonsense mutations by amlexanox in human cells
نویسندگان
چکیده
BACKGROUND Nonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough. METHODS Using a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs. RESULTS We demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional. CONCLUSIONS As a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.
منابع مشابه
Repurposing Amlexanox as a ‘Run the Red Light Cure-All’ with Read-through – a ‘No-Nonsense’ Approach to Personalised Medicine
My first discussion of the value of read-through therapy for human genetic disease was presented with a focus on cancer [1]. The aim was to rescue substitution nonsense mutations – premature termination codon (PTC) – via read-through. My intention was to present a valuable addition to the armamentarium of drug treatments for cancer that would be patient compliant, safe, as well as effective. Si...
متن کاملAssociation of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کاملReadthrough-Promoting Drugs Gentamicin and PTC124 Fail to Rescue Nav1.5 Function of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Carrying Nonsense Mutations in the Sodium Channel Gene SCN5A.
BACKGROUND Several compounds have been reported to induce translational readthrough of premature stop codons resulting in the production of full-length protein by interfering with ribosomal proofreading. Here we examined the effect of 2 of these compounds, gentamicin and PTC124, in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes bearing nonsense mutations in the sodium channe...
متن کاملPremature Termination Codon Read-Through in the ABCC6 Gene: Potential Treatment for Pseudoxanthoma Elasticum
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder manifesting with ectopic connective tissue mineralization, caused by mutations in the ABCC6 gene, with ~35% of all mutations being premature termination mutations. In this study, we investigated the therapeutic potential of the nonsense codon read-through-inducing drug, PTC124, in treating PXE. The ability of this drug to facilit...
متن کاملMembrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression.
Mutations that result in the loss of the protein dysferlin result in defective muscle membrane repair and cause either a form of limb girdle muscular dystrophy (type 2B) or Miyoshi myopathy. Most patients are compound heterozygotes, often carrying one allele with a nonsense mutation. Using dysferlin-deficient mouse and human myocytes, we demonstrated that membrane blebbing in skeletal muscle my...
متن کامل